Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(28): 10348-10360, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37417589

RESUMEN

In this article, the speciation and behavior of anthropogenic metallic uranium deposited on natural soil are approached by combining EXAFS (extended X-ray absorption fine structure) and TRLFS (time-resolved laser-induced fluorescence spectroscopy). First, uranium (uranyl) speciation was determined along the vertical profile of the soil and bedrock by linear combination fitting of the EXAFS spectra. It shows that uranium migration is strongly limited by the sorption reaction onto soil and rock constituents, mainly mineral carbonates and organic matter. Second, uranium sorption isotherms were established for calcite, chalk, and chalky soil materials along with EXAFS and TRLFS analysis. The presence of at least two adsorption complexes of uranyl onto carbonate materials (calcite) could be inferred from TRLFS. The first uranyl tricarbonate complex has a liebigite-type structure and is dominant for low loads on the carbonate surface (<10 mgU/kg(rock)). The second uranyl complex is incorporated into the calcite for intermediate (∼10 to 100 mgU/kg(rock)) to high (high: >100 mgU/kg(rock)) loads. Finally, the presence of a uranium-humic substance complex in subsurface soil materials was underlined in the EXAFS analysis by the occurrence of both monodentate and bidentate carboxylate (or/and carbonate) functions and confirmed by sorption isotherms in the presence of humic acid. This observation is of particular interest since humic substances may be mobilized from soil, potentially enhancing uranium migration under colloidal form.


Asunto(s)
Uranio , Uranio/química , Suelo , Carbonato de Calcio/química , Carbonatos/química , Espectrometría de Fluorescencia/métodos , Sustancias Húmicas
2.
Environ Sci Technol ; 53(14): 7974-7983, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31187628

RESUMEN

Uranium speciation and bioaccumulation were investigated in the sea urchin Paracentrotus lividus. Through accumulation experiments in a well-controlled aquarium followed by ICP-OES analysis, the quantification of uranium in the different compartments of the sea urchin was performed. Uranium is mainly distributed in the test (skeletal components), as it is the major constituent of the sea urchin, but in terms of quantity of uranium per gram of compartment, the following rating: intestinal tract > gonads ≫ test, was obtained. Combining both extended X-ray Absorption Spectroscopy and time-resolved laser-induced fluorescence spectroscopic analysis, it was possible to identify two different forms of uranium in the sea urchin, one in the test, as a carbonato-calcium complex, and the second one in the gonads and intestinal tract, as a protein complex. Toposome is a major calcium-binding transferrin-like protein contained within the sea urchin. EXAFS data fitting of both contaminated organs in vivo and the uranium-toposome complex from protein purified out of the gonads revealed that it is suspected to complex uranium in gonads and intestinal tract. This hypothesis is also supported by the results from two imaging techniques, i.e., Transmission Electron Microscopy and Scanning Transmission X-ray Microscopy. This thorough investigation of uranium uptake in sea urchin is one of the few attempts to assess the speciation in a living marine organism in vivo.


Asunto(s)
Paracentrotus , Uranio , Animales , Gónadas
3.
Dalton Trans ; 44(12): 5417-27, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25689216

RESUMEN

Seawater contains radionuclides at environmental levels; some are naturally present and others come from anthropogenic nuclear activity. In this report, the molecular speciation in seawater of uranium(VI) and neptunium(V) at a concentration of 5 × 10(-5) M has been investigated for the first time using a combination of two spectroscopic techniques: Time-resolved laser-induced fluorescence (TRLIF) for U and extended X-ray absorption fine structure (EXAFS) for U and Np at the LIII edge. In parallel, the theoretical speciation of uranium and neptunium in seawater at the same concentration is also discussed and compared to spectroscopic data. The uranium complex was identified as the neutral carbonato calcic complex UO2(CO3)3Ca2, which has been previously described in other natural systems. In the case of neptunium, the complex identified is mainly a carbonato complex whose exact stoichiometry is more difficult to assess. The knowledge of the actinide molecular speciation and reactivity in seawater is of fundamental interest in the particular case of uranium recovery and more generally regarding the actinide life cycle within the biosphere in the case of accidental release. This is the first report of actinide direct speciation in seawater medium that can complement inventory data.


Asunto(s)
Neptunio/análisis , Agua de Mar/análisis , Uranio/análisis , Espectrometría de Fluorescencia , Espectroscopía de Absorción de Rayos X
4.
Appl Spectrosc ; 59(5): 696-705, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15969817

RESUMEN

This paper describes the ability of the combination of electrospray ionization mass spectrometry (ESI-MS) and anion-exchange chromatography coupled with inductively coupled plasma atomic emission spectrometry (AEC-ICP-AES) for cobalt speciation study in the binary cobalt-cysteine system. ESI-MS, allowing the identification and the characterization of the analytes, is used as a technique complementary to AEC-ICP-AES, providing elemental information on the separated species. The methods have been developed through the study of samples containing Co2+ and 1-fold to 5-fold molar ratios of cysteine over a pH range 2.5 to 11. In each case, cobalt-cysteine complexes were characterized by ESI-MS in negative ion mode. AEC-ICP-AES allowed further separation and detection of the cobalt species previously characterized. The strong influence of pH and ligand-to-metal ratios on the nature and stoichiometry of the species is demonstrated. For the first time, a direct experimental speciation diagram of cobalt species has been established owing to these analytical techniques. This work is a promising basis for the speciation analysis of cobalt, since a good knowledge of cobalt speciation is of prime importance to better understanding its fate in biological and environmental media.


Asunto(s)
Cromatografía por Intercambio Iónico/métodos , Cobalto/análisis , Cobalto/química , Cisteína/análisis , Cisteína/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrofotometría Atómica/métodos , Resinas de Intercambio Aniónico , Sitios de Unión , Sustancias Macromoleculares/análisis , Sustancias Macromoleculares/química
5.
Chemistry ; 11(12): 3689-97, 2005 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-15809989

RESUMEN

New tripodal gem-(bis-phosphonates) uranophiles were discovered by a screening method that allowed for the selection of ligands with strong uranyl-binding properties in a convenient microtiter-plate format. The method is based on competitive uranium binding by using Sulfochlorophenol S as chromogenic chelate. This dye compound was found to present high uranyl complexation properties and allowed to highlight ligands presenting association constants for UO(2+)(2) up to 10(18) at pH 7.4 and 10(20) at pH 9. A collection of 40 known ligands including polycarboxylate, hydroxamate, catecholate, hydroxypyridonate and hydroxyquinoline derivatives was tested. Also screened was a combinatorial library prepared from seven amine scaffolds and eight acrylates bearing diverse chelating moieties. Among these 96 tested candidates, a tripod derivative bearing gem-bis-phosphonates moieties was found to present the highest complexation properties over a wide range of pH and was further studied.


Asunto(s)
Naftalenos/química , Compuestos Organometálicos , Sulfonas/química , Uranio/química , Concentración de Iones de Hidrógeno , Ligandos , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química
6.
Appl Spectrosc ; 57(8): 1027-38, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14661847

RESUMEN

Results of an inter-laboratory round-robin study of the application of time-resolved emission spectroscopy (TRES) to the speciation of uranium(VI) in aqueous media are presented. The round-robin study involved 13 independent laboratories, using various instrumentation and data analysis methods. Samples were prepared based on appropriate speciation diagrams and, in general, were found to be chemically stable for at least six months. Four different types of aqueous uranyl solutions were studied: (1) acidic medium where UO2(2+)aq is the single emitting species, (2) uranyl in the presence of fluoride ions, (3) uranyl in the presence of sulfate ions, and (4) uranyl in aqueous solutions at different pH, promoting the formation of hydrolyzed species. Results between the laboratories are compared in terms of the number of decay components, luminescence lifetimes, and spectral band positions. The successes and limitations of TRES in uranyl analysis and speciation in aqueous solutions are discussed.


Asunto(s)
Técnicas de Química Analítica/normas , Laboratorios/normas , Análisis Espectral/normas , Uranio , Cooperación Internacional , Control de Calidad , Reproducibilidad de los Resultados , Factores de Tiempo , Uranio/análisis , Uranio/química , Agua
7.
Appl Spectrosc ; 57(9): 1151-61, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14611046

RESUMEN

Decorporation of radionuclides is of continuous interest in order to reduce doses in case of occupational or accidental human exposure. In the present study, insights into the non-covalent interactions that hold the well-known chelating agent DTPA (diethylenetriaminepentaacetic acid) with inorganic elements of interest, such as europium and strontium, and their ability to form stable complexes, are investigated with two spectroscopic techniques, i.e., electrospray ionization mass spectrometry (ESI-MS) and time-resolved laser-induced fluorescence (TRLIF). First investigations are on DTPA and europium alone and end with a complete study of the Eu-DTPA system. The pH variation allows one to readily investigate whether different species (protonated, hydrolyzed, etc.) exist in the pH range 2-9 and evaluate the stoichiometry and conditional stability constant for the Eu-DTPA complex. Additional experiments by ESI-MS are reported for Sr(II) in interaction with DTPA and EDTA.


Asunto(s)
Ácido Edético/química , Europio/química , Ácido Pentético/química , Espectrometría de Fluorescencia/métodos , Agua/química , Descontaminación/métodos , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Rayos Láser , Sustancias Macromoleculares , Protectores contra Radiación/química , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA